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namre Vol 437|15 September 2005|doi:10.1038 /nature03959

Nature X|0ff ZEH=l X|ZO| NGS A|AHl(454)
ARTICLES -

Genome sequencing in microfabricated
high-density picolitre reactors

Marcel Margulies'*, Michael Egholm'*, William E. Altman’, Said Attiya', Joel S. Bader', Lisa A. Bemben',

Jan Berka', Michael S. Braverman', Yi-Ju Chen', Zhoutao Chen', Scott B. Dewell’, Lei Du', Joseph M. Fierro',
Xavier V. Gomes', Brian C. Godwin', Wen He', Scott Helgesen', Chun He Ho', Gerard P. Irzyk’,

Szilveszter C. Jando', Maria L. I. Alenquer', Thomas P. Jarvie', Kshama B. Jirage', Jong-Bum Kim',

James R. Knight', Janna R. Lanza', John H. Leamon’, Steven M. Lefkowitz', Ming Lei', Jing Li', Kenton L. Lohman’,
Hong Lu’, Vinod B. Makhijani', Keith E. McDade'!, Michael P. McKenna', Eugene W. Myers?,

Elizabeth Nickerson', John R. Nobile!, Ramona Plant!, Bernard P. Puc', Michael T. Ronan', George T. Roth’,
Gary J. Sarkis', Jan Fredrik Simons', John W. Simpson', Maithreyan Srinivasan', Karrie R. Tartaro',

Alexander Tomasz®, Kari A. Vogt', Greg A. Volkmer', Shally H. Wang', Yong Wang', Michael P. Weiner?,
Pengguang Yu', Richard F. Begley' & Jonathan M. Rothberg'

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to
reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly
greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of
individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an
approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an
emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol
optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness
of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage
at 99.96% accuracy in one run of the machine.
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Figure 3 | Flowgram of a 1T13-bases read from an M. genitalium

run. Nucleotides are flowed in the order T, A, C, G. The sequence is shown
above the flowgram. The signal value intervals corresponding to the various
homopolymers are indicated on the right. The first four bases (in red, above
the flowgram) constitute the ‘key’ sequence, used to identify wells containing
a DNA-carrying bead.
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7. DETERMINE FIRST BASE 8. IMAGE FIRST BASE 9. DETERMINE SECOND BASE
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llumina sequence= X[Z7HX|] |FX K|
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Macrogen Co. service:

HiSeq X ten, HiSeq4000, NextSeq

HiSeq X System Performance Parameters
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Xl_l xo_l _é;l' Ol_l 7|_|--|C->rx|_-| x_” 7E:| xo_l $1 ,OOO Al EH (human, plant, animal)
OQutput per Run Dual flow cell: 1.6-1.8 Tb
ingle Reads Dual flow cell: 5.3-6 billion
Passing Filter
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_7F_||_O'”|_ ”A"OI_" ﬂEllelul_l' :O'IE T Maximum Read 2 X150 bp
Length

Q_lol_l' MG' Seq EEOl_l- E_Ie'l Ebl%! Run Time <3 days

Quality >/5% of bases above Q30 at 2 x 150 bp
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DNA can be sequenced by threading it through a microscopic pore in a membrane,
Bases are identified by the way they affect ions flowing through the pore from one
side of the membrane to the other.

- DNA DOUBLE
HELEX

© A flow of ions through
the pore creates a current
Each base blocks the

flow to a different degree,
altering the current

@ One protein
unzips the
DMA helix into
two strands.

& A second
protein creates
a pore in the
membrane

and holds

an “adapter”
mokecule.

© The adapter molecule
keeps bases in place long
enough for them to be
identified electronically.
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MinION

Mk1C

Available to pre-order

Complete sequencing,
analysis, and viewing device

Up to 30 Gb data / flow cell
512 channels®

2l MinlON2 =&
A8 & 7hSOILt.

MinION

Mk1B

Commercially available

Portable, USB powered
biological analysis

Up to 30 Gb data / flow cell
512 channels*

GridION PromethION

P24 P48
Commercially available Commercially available
Five flow cell capacity and High-throughput, versatile benchtop
integrated computing system (P24 or P48)

Up to 150 Gb (5 x 30 Gb) data / device

Flongle

Adapter for MinlON/GridION,
supports smaller single-use flow cells.
Up to 1.8 Gb currently; towards 3 Gb.

5 x 512 channels* P24 Pas
>3.5 Tb data / >7 Th data /
device device
24 x 3,000 48 x 3,000
channels* channels*
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Close both i. the Priming port and ii. the SpotON sample port*

Molecular weight
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Summary: Comparison of NGS Platforms

Method

O Hlumina (HiSeq, bridge PCR sequencing by Light 100-200 bp ~ 01 %
MiSeq etc) synthesis
X Life Tech lon Torrent  emulsion PCR lon semiconductor  pH 200-400 bp ~ 1 %
/ Proton sequencing
Roche 454 emulsion PCR Pyrosequencing, light 700 bp . ~1%
X cleavage of released ,H'%h errorlrate
Sanh in homopolymer
Life Tech SOLID emulsion PCR sequencing by light 100 bp
X ligation of ~01%
hybridizing labeled
oligos
Pacific Biosciences No amplification, polymerase light 45-8kb
O PacBio single-molecule incorporating <1%
sequencing colored NTPs
o Oxford Nanopore No amplification, DNA molecule current >5.4kb
MinlON single molecule traverses pore <02%
nanopore
sequencing

Further reading, great lecture: Sequencing technology - Past, Present and Future, http://www.molgen.mpg.de/899148/0W52013_ NGS.pdf
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Abstract

Premise: Developing an effective and easy-to-use high-molecular-weight (HMW)
DNA extraction method is essential for genomic research, especially in the era of
third-generation sequencing. To efficiently use technologies capable of generating
long-read sequences, it is important to maximize both the length and purity of the
extracted DNA; however, this is frequently difficult to achieve with plant samples.
Methods and Results: We present a HMW DNA extraction method that combines
(1) a nuclei extraction method followed by (2) a traditional cetyltrimethylammonium
bromide (CTAB) DNA extraction method for plants with optimized extraction
conditions that influence HMW DNA recovery. Our protocol produced DNA
fragments (percentage of fragments >20 kbp) that were, on average, ca. five times
longer than those obtained using a commercial kit, and contaminants were removed
more effectively.

Conclusions: This effective HMW DNA extraction protocol can be used as a standard
protocol for a diverse array of taxa, which will enhance plant genomic research.

KEYWORDS
CTAB, DNA extraction, Femto Pulse system, high-molecular-weight DNA, nuclei extraction
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The successful application of third-generation sequencing
technologies for sequencing nuclear genomes requires high-
molecular-weight (HMW) DNA in sufficient quantity and
quality for library preparation and sequencing (Healey
et al,, 2014). These DNA requirements are often challenging
for non-model plant species and represent an important
bottleneck for plant genome research; therefore, the
development of an efficient HMW DNA extraction method
is essential for the plant genomics community. Although
several approaches have recently been provided for HMW
DNA extraction from plants, they were only applied to a few
taxa, required additional purification steps, or the essential
factors influencing the process were not adequately
discussed (Healey et al., 2014; Mayjonade et al., 2016; Li
et al., 2020; Cai et al., 2021; Jones et al.,, 2021; Mavrodiev
etal., 2021; Zerpa-Catanho et al,, 2021). Therefore, there is a

need for an easy-to-use protocol that can produce HMW
DNA from a wide range of plant taxa at a low cost.

In this study, we propose a HMW plant DNA extraction
method that combines two classic protocols: (1) a nuclei
extraction method (Green et al., 1987) and (2) a cetyltrimethyl-
ammonium bromide (CTAB) plant DNA extraction method
(Doyle and Doyle, 1987), with modifications. The nuclear
extraction step reduces the ratio of organelle genomes in the
extracted DNA (Hanania et al., 2004). The CTAB method has
been modified in our protocol to solve the problems associated
with phenolics and polysaccharides: polyvinylpyrrolidone (PVP)
was added to isolate genomic DNA, as suggested by Healey
et al. (2014). To more efficiently meet the needs of genome
sequencing, our combined protocol includes (1) improvements
to optimize time and reagent requirements and (2) suggestions
of favorable conditions for factors influencing the results




(number of pipetting steps, grinding time in liquid nitrogen,
and centrifugation force in g). A combination of these two
classic protocols has already been proposed for high-quality
DNA extraction from Vitis vinifera L. (Hanania et al., 2004), but
not with regard to HMW DNA and applicability in other taxa.
Similarly, a method combining the nuclear isolation process and
sodium dodecyl sulfate (SDS)-based DNA extraction protocol
has recently been proposed for HMW DNA extraction (Zerpa-
Catanho et al., 2021); however, its effectiveness has only been
confirmed in a few plant taxa (six genera in three families), and
it requires an extra purification step (QIAGEN Genomic Tip
20/G columns; QIAGEN, Hilden, Germany). By contrast, we
have assessed the broad applicability of our protocol in species
representing 18 orders of flowering plants from all major
angiosperm lineages (Angiosperm Phylogeny Group, 2016), as
well as a gymnosperm, Pinus L.

To confirm the effectiveness of our HMW DNA extraction
method, we compared the results with those obtained using a
commercial plant DNA extraction kit. The DNA length
distributions and purity were evaluated as validation criteria
for comparing the two methods. We also discuss factors
influencing the results, such as the number of pipetting steps,
grinding time in liquid nitrogen, and centrifugation force in g

METHODS
HMW DNA extraction method

We sampled leaves of species from each of 18 major
angiosperm orders and one gymnosperm to test the taxon-
specific efficiency of our protocol. For details of all samples
used in this study, see Appendix 1. Reagents, recipes, and a
stepwise protocol are provided in Appendix 2. Our HMW
DNA extraction protocol consists of three major steps: (1)
grinding and nuclei isolation, (2) nuclear DNA extraction
using CTAB buffer, and (3) RNase A and proteinase K
treatment. We started with 2g of tissue (preferably fresh,
young leaves) and used a vacuum-aided cell strainer (40 um
and 100 pm; pluriSelect Life Science, Leipzig, Germany) to
collect the nuclei suspension. We also conducted additional
DNA extractions using the same samples from our HMW
DNA extraction protocol. For this, we employed the Exgene
Plant SV kit (GeneAll Biotechnology, Seoul, Republic of
Korea), a commercial plant DNA extraction kit based on the
DNA-binding filter method. Following the instructions in
the manufacturer's manual, we used 0.1g of leaf tissue,
which is the recommended amount for fresh leaves.

Grinding and nuclei isolation

The protocol starts with 2g of fresh, young leaves. We
ground the leaves into a powder in liquid nitrogen (-80°C)
and placed the powder in 20 mL of nudlei isolation buffer
(IB). After 30s of vortexing, we added Triton X-100 (20 uL)
and P-mercaptoethanol (1.5mL). This step should be

conducted inside a fume hood as P-mercaptoethanol is
toxic. The samples were placed on ice for 10 min, and then
the mixture was filtered through a 100-um cell strainer
(pluriStrainer 100 um; pluriSelect Life Science) seated in a
50-mL conical tube to collect the nuclear suspension.
During filtration, gently scraping plant material accumu-
lated on the filter with the side of a 1000-pL pipette tip may
facilitate a smoother filtration. The filtering step was
repeated with a 40-um cell strainer (pluriStrainer 40 pum;
pluriSelect Life Science), and Triton X-100 (200 uL) was
added to the obtained nuclear suspension. This process lyses
the cell and organellar membranes but not the nuclear
membrane (Peterson et al., 1997). As a non-ionic detergent,
Triton X-100 facilitates the release of nuclei from cells and
prevents nuclei from dumping (Loureiro et al., 2007). To
pellet the nuclei, the samples were centrifuged, and the
supernatant was discarded. Centrifugation for 10 min at
3000 x g (4°C) is recommended to prevent fragmenting long
DNA molecules (see Results).

Nuclear DNA extraction using CTAB buffer

The nuclei pellet was resuspended in 5 mL of Carlson Lysis
Buffer (Carlson et al, 1991). Adding p-mercaptoethanol
(12.5uL) denatures globular proteins to make them
insoluble in water (Jadhav et al., 2015). An incomplete
resuspension can reduce yield; thus, we incubated the
samples at 65°C for a minimum of 15min for efficient
resuspension. If the pellet still does not suspend, crushing
the pellet with a pipette tip might be helpful. For easy
handling, we transferred the suspended nudlei pellet to a
15-mL tube instead of proceeding with the 50-mL tube.
We added 5mL (equal volume) of chloroform:isoamyl
alcohol (24:1 [v/v]) to remove impurities. During this step,
chloroform (CHCls; a non-polar 3-hydrophobic solvent)
dissolves non-polar proteins and lipids to promote the
partitioning of lipids and cellular debris into the organic
phase. Isoamyl alcohol (CsH,,0) prevents the emulsifica-
tion of the solution (Jadhav et al,, 2015). After centrifuga-
tion (3000 x g for 10 min at 4°C), the aqueous upper phase
containing DNA was collected and transferred into a new
tube, while the organic phase containing lipids, proteins,
and other impurities was discarded. The separation of a
pure aqueous phase is critical for the purity of the end
product, and we recommend collecting just four-fifths of
the upper liquid volume to avoid including any cellular
debris. Adding the proper ratio of sodium acetate (NaOAc)
and isopropanol to the acquired supematant is essential for
precipitating the DNA: for every 10 mL of supernatant, a
1/10 volume of 3M NaOAc (1 mL) and the same volume
(including NaOAc) of room-temperature isopropanol
(11mL) are needed. It is essential to use room-
temperature isopropanol for this step; otherwise, both
polysaccharides and DNA will precipitate (Shepherd and
McLay, 2011). The precipitated DNA was separated from
other solvents through centrifugation (3000 x g for 10 min

at 4°C), and the resulting DNA pellet was washed with 70%
cold ethanol, recentrifuged (3000 x g for 10 min at 4°C), and
thoroughly dried. We recommend rapidly drying samples
using room-temperature air blown by a hair dryer.

RNase A and proteinase K treatment

The DNA pellet was dissolved in 2mL Tris-EDTA (TE)
buffer. To remove RNA and protein efficiently, which
account for most of the impurities in extracted DNA,
we treated the samples with RNase A (10 mg/mL) and
proteinase K (>600 units/mL), respectively. For each
treatment, the proper incubation time and enzyme activation
temperature are important: 5min at 37°C for RNase A and
15min at 50°C for proteinase K. The enzymes used in each
step are removed by a treatment with 2 mL of chloroform:
isoamyl alcohol (24:1 [v/v]). After treatment with RNase A
and proteinase K, the same precipitation procedure as for
the CTAB extraction is followed. The resulting pellet is
dissolved using an appropriate amount of deionized water
(50-500 uL) according to the size of the pellet (recom-
mended final concentration is ca. 200 ng/uL). If it is difficult
to dissolve the pellet, we recommend incubating the tube at
50°C. If the pellet remains after incubation at 50°C, it is
recommended to take only the dissolved aqueous layer after
brief centrifugation.

Quality evaluation of extracted DNA

The quantity and purity (Asso/A2s0 and A;4p/As3, ratios)
of the extracted DNA were measured using a Qubit 4
Fluorometer (Thermo Fisher Scientific, Waltham, Massa-
chusetts, USA) and a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific), respectively. The length
distribution of the extracted DNA was evaluated using a
Femto Pulse system (Agilent Technologies, Santa Clara,
California, USA).

Optimization of conditions for HMW DNA
recovery

We tested three factors influencing the results: (1) the
number of pipetting steps, (2) the grinding time in liquid
nitrogen, and (3) the centrifugation force in g Three
independent experiments were performed on different taxa
in each case to evaluate each factor. First, we tested the
impact of high g forces during centrifugation on DNA
damage by comparing the setting in our protocol (3000 x g;
control group) and a higher setting (5000 x g experimental
group). Second, the amount of grinding was compared.
The control group was subjected to one minute of grinding
(ensuring the sample was fully chilled before grinding
began). The experimental group was subjected to an

additional two minutes of grinding after adding extra
liquid nitrogen. Third, we assessed whether high-speed and
multiple pipetting steps could potentially damage DNA. We
conducted pumping at the maximum-achievable speed 200
times in a tube using a P200 tip (experimental group) and
compared the resulting DNA size distribution with the
original DNA (control group).

RESULTS
DNA quantity, size, and purity measurements

Usually, the quantity of the end DNA product per
extraction is enough to generate 4-5 libraries (8-15pg)
for long DNA sequencing with MinION or GridlON
(Oxford Nanopore Technologies, Oxford, United King-
dom), based on the library construction protocol (Ligation
Sequencing Kit). The measurements obtained through
the Femto Pulse system (peak height and percentages of
fragments >20 kbp in the fragment-length distribution
graph) confirm that our protocol successfully produced
DNA fragments an average of five times longer than those
generated using the commercial kit (Table 1, Figure 1),
although the results of our standard HMW DNA extraction
protocol showed different patterns depending on the
taxon (Figure 2A,B). With our protocol, the taxon with
the highest portion of >20-kbp fragments was Chloranthus
fortunei Solms (Chloranthales; 83.6%), and the longest peak
of DNA fragment distribution was obtained from Alisma
plantago-aquatica subsp. orientale (Sam.) Sam. (Alismatales;
183.0 kbp) (Table 1). In the most efficient instance, our
protocol yielded 35 times more DNA fragments over 20 kbp
(77.1%) in Lysimachia davurica Ledeb. (Ericales) than the
commercial kit, for which only 2.2% of fragments were
greater than 20 kbp.

The quality of DNA extracted using the HMW method
was superior to that obtained using the kit method in most
samples. In the context of next-generation sequencing, high-
quality DNA is characterized as predominantly HMW with
an Aje/Asg ratio over 1.8 and without contaminating
substances, such as polysaccharides or phenolics (Kasem
et al, 2008; Desjardins and Conklin, 2010). With both
methods, the Ajq/Azgz absorbance ratio, which measures
protein contamination, showed similar results with low
contamination (both averaged 1.83); however, our standard
protocol more effectively removed carbohydrates and organic
solvents (average A,q /A3 ratio= 1.88) than the commercial
kit (average A,eo/Az3p ratio=149) (Table 2; Figure 2C, D).
Generally, Ao/ Ayyp values between 1.8-2.2 indicate DNA is
free of carbohydrates and organic solvents (Kasem et al., 2008;
Desjardins and Conklin, 2010).

To address the statistical difference between the results
from our protocol and a commercial kit, we performed
paired t-tests on all pairs of DNA length and quality,
with P <0.05 considered significant. In the DNA length



TABLE 1 A comparison between our HMW DNA extraction method and a commercial kit. Fragment lengths were estimated using the Femto Pulse
system.

HMW method Commercial kit
Taxon Peak (kbp) % of >20 kbp (a) Peak (kbp) % of>20 kbp (b) Ratio (a)/(b) x 100 (%)
Platydadus orientalis 21.57 58.8% 17.70 324% 181.5%
Nymphaea tefragona var. minima 2210 59.7% 14.04 14.4% 414.6%
Chloranthus fortunei 38.21 83.6% 26.87 54.2% 154.2%
Asarum sieboldii 2274 69.1% 28.81 66.5% 104.0%
Alisma plantago-aquatica subsp. orientale 183.00 56.8% 11.21 10.8% 525.9%
Hemerocallis fulva 24.80 66.2% 31.48 70.2% 94.3%
Carex breviculmis 107.36 83.2% 22.19 52.4% 159.8%
Epimedium koreanum 169.21 67.2% 10.60 10.2% 658.8%
Euonymus alatus 27.04 67.0% 2296 58.1% 115.3%
Viola collina 142.52 75.1% 10.69 14.9% 504.0%
Spiraea prunifolia var. simpliciflora 165.50 70.1% 10.27 7.2% 973.6%
Pelargonium inquinans 22.45 65.2% 21.20 55.7% 117.1%
Aesculus turbinata 24.00 66.1% 15.38 26.1% 253.3%
Lysimachia davurica 154.32 77.1% 9.08 2.2% 3504.5%
Isodon inflexus 23.88 71.9% 21.05 49.1% 145.5%
Ipomoea nil 23.65 68.4% 25.78 42.1% 162.5%
Adenophora erecta 132.21 67.2% 13.36 19.1% 351.8%
Cicuta virosa 17.70 45.5% 21.05 54.4% 83.6%
Sambucus williamsii 157.43 64.8% 20.67 44.0% 147.2%

Average 77.88 £64.48 67.53% + 0.09% 18.65 + 6.67 36.00% + 021% 455.34% + 7.55%




_

muuuu.m.wmmmum

RN LI

-

|
_

Lot
.-.ﬂm.....l..
ﬁ ........................................ i.l s R arvee-
po—s —coase
B rese || HEEE
b |I...h
e
" » "

]
RIE LR

s EE 882 EREEE R AE

i
URLE LI

st
|

|

el

|
_

T

Size ftp)

b

&

§ F 8

1357

13000~
13000~
18000~
10000

ERSBEEEEERBEER



—— - a o S
i ®1 S o i
! : ™~ 3 B |
 m ; BE |
T o . 1 .
— 0 1 H ;
£o| e ) i
N8 i
3 = o x o
o s~ 8
= e = a = . .
< - g 8 Qv _ E
—t E L — . — i
g W= T < = < '
< ° 3 J §
e < -4 |
& '
- g " e 8 | o
s E 7 o
w;
R — _L (e = -1
| ] ¢ i | ] T | |
Commercial Commercial Commercial Commercial
HMW Kit HMW Kit HMW Kit HMW Kit

FIGURE 2 Comparison of the size and quality of DNA extracted using the two methods. (A, B) Size comparisons of (A) the highest peak and (B) the

percentage of fragments >20 kbp. (C, D) Quality comparisons using (C) Asgo/Azso ratio and (D) Asgo/Assp ratio. The bold horizontal line in the middle of the
box plot is the median value, and the lower and upper boundaries indicate the 25th and 75th percentiles, respectively.



Appendix 2: An optimized protocol for high-
molecular-weight (HMW) DNA extraction in plant
genomic studies.

Note: This protocol starts with 2 g of fresh, young leaves.
Usually, the end product of one extraction process is
sufficient to generate 4-5 libraries for sequencing with
MinION or GridION (Oxford Nanopore Technologies,
Oxford, United Kingdom).

I. Preparation of solutions

1. Preparation of nuclei isolation buffer (IB) (for 10
reactions)

« For 200 mL of nudlei IB, dissolve the following in ca.
100 mL of water:

3mL Tris-HCI (1 M stock, pH 9.5; final concentra-
tion: 15 mM)

4mL EDTA (0.5 M stock; final concentration: 10 mM)
1.94 g KCI (final concentration: 130 mM)

0.8 mL NaCl (5M stock; final concentration:
20 mM)

« Gradually add 16 g of polyvinylpyrrolidone (PVP)-10
while rapidly stirring the solution with a magnetic
stir bar.

« Use water to increase the volume to 200 mL.

« Add 0.05 g of spermine and 0.07 g of spermidine. Store
IB at 4°C.

« Prepare 20pL of Triton X-100 and 1.5mL of
p-mercaptoethanol, to be added after mixing the
IB with the ground tissue (final concentrations of
0.1% and 7.5%, respectively; this constitutes
IBTB).

Note: Store at 4°C until use, or for a maximum of two
weeks.

2. Preparation of Carlson Lysis Buffer (Carlson

et al., 1991)

« Carlson Lysis Buffer = 2x cetyltrimethylammonium
bromide (CTAB) buffer + 1% polyethylene glycol
(PEG) 6000

« For 100 mL of Carlson Lysis Buffer:

10 mL Tris-HCI (1 M stock, pH 9.5; final concentra-
tion: 100 mM)
4 mL EDTA (0.5 M stock; final concentration: 20 mM)
8.2g Nad (final concentration: 1.4 M)
2 g CTAB (final concentration: 2%)
1g PEG (final concentration: 1%)
Note: Store at room temperature until use, or for up to two
weeks.

3. Tris-EDTA buffer (TE) (1x)

« TE buffer = 10 mM Tris-HCI (pH 8.0) + 1 mM EDTA
Note: Store at 4°C until use.

II. Grinding and nuclei isolation (modified from
Hanania et al., 2004)

1. Chill mortar and pestle at —80°C before beginning the
extraction procedure. Grind 2 g of fresh, young leaves in
liquid nitrogen for 1 min.

Note: Ensuring the sample is fully chilled before grinding.

2. Add 2 g of ground leaf powder to 20 mL of IB in a 50-mL
conical tube and mix by inverting.

Note: Over-grinding negatively affects the extraction of HMW
DNA. Grinding for 1 min is fine; additional grinding with
extra liquid nitrogen is not needed.

Note: Increase the sample amount for succulent plants, and
increase the volume of IB when the mixture becomes
viscous.

3. Immediately add 20 pL of Triton X-100 and 1.5mL of
B-mercaptoethanol and mix by inverting.

4. Keep on ice for 10 min.

Note: This step should be conducted inside a fume hood
because the IBTB contains B-mercaptoethanol, which is
toxic.

5. Filter the mixture through a vacuum-aid cell strainer
(pore size: 100 pm) seated on a 50-mL conical tube to
collect the nudlei suspension (Figure Al).

Note: To aid filtration, gently scrape away plant tissue from
the filter with the top of a 1000-pL (blue) pipette tip. The
filtrate should be light green.

6. Repeat the filtering step with a 40-um pore cell strainer.

7. Add 200 pL Triton X-100 to the nuclei suspension.

Note: This step lyses cell and organellar membranes, but not
the nuclear membrane.

8. To pellet the nuclei, centrifuge for 10 min at 3000 x g
at 4°C.

9. Discard the supernatant.

II1. Nuclear DNA extraction using CTAB buffer
(modified from Doyle and Doyle, 1987)

1. Add 5mL of Carlson Lysis Buffer and 12.5pL
B-mercaptoethanol to the tube and resuspend the nuclei
pellet with brief tapping.

Note: Incomplete resuspension could reduce the yield as
many nuclei will not have been lysed by CTAB. Briefly
pipetting the pellet with an end-cut 1000-uL pipette tip
and gentle vortexing may aid resuspension.

2. Incubate at 65°C for 15 min (maximum 2 h).

Note: If the pellet is not completely resuspended after
incubation, a brief centrifugation (3000 x g for 5min)
followed by only the use of the supernatant will help
speed up processing.

3. Transfer the suspended nuclei pellet to a 15-mL
polypropylene tube and add an equal volume (5mL)
of chloroform:isoamyl alcohol (24:1 [v/v]) solution.

4. Invert several times to mix.

5. Centrifuge (3000 x g) for 10 min at 4°C.

FIGURE Al The setup of the vacuum-aid filtration including a liquid-overflow trap filled with silica gel. Using this setup can shorten extraction times.

6. Transfer the aqueous upper phase to a new tube using a
P1000 pipette.

Note: Take only 80% of the supernatant to avoid
the inclusion of cellular debris. Take care removing
the supernatant as this step is highly correlated with the
quality of extracted DNA.

Note: If the supernatant is viscous, slow pipetting will help
avoid sucking up the plant tissue.

7. Repeat steps 3-6 (optional but highly recommended).

8. Add a 1/10 volume of 3M sodium acetate (NaOAc),
mix gently, add the same volume of isopropanol (room
temperature), and gently invert several times.

Note: For 4.5mL of supernatant, add 0.45mL of 3 M
NaOAc and 4.95 mL of isopropanol.

9. Precipitate at -20°C for more than 1 h.

Note: If precipitates are visible, moving to the next step is
possible for faster processing. For highly viscous
extracts, cold treatment makes the extract more viscous
and more difficult to work with.

10. Centrifuge (3000 x g) for 10 min at 4°C.

11. Discard supernatant.

12. Wash pellets with 70% cold ethanol (ca. 20 mL per tube).

13. Centrifuge (3000 x g) for 10 min at 4°C.

14. Discard supernatant.

Note: Keep the tube inverted for 1 min, and wipe out the
tube wall with a Kimwipe.

15. Dry the pellet completely.

Note: This step is very important for the quality of the
DNA. The smell of alcohol is a good indicator of
incomplete drying.

IV. RNase A and proteinase K treatment

1. Dissolve the pellet with 2 mL of TE buffer.

Note: If the pellet is difficult to dissolve, incubate in a 50°C
water bath for up to 10 min.

Note: Gently crushing the pellet with a pipette tip might be
helpful for faster resuspension, but never vortex the sample.
If the pellet is not completely resuspended after incubation,
a brief centrifugation (3000 x g for 5 min) followed by only
the use of the supernatant will help speed up processing.

2. Add 20 pL (10 uL/mL) of RNase A (10 mg/mL conc.).

3. Incubate at 37°C for 5min.

4. Add 20puL (10pL/mL) of proteinase K (>600 units/
mL conc.).

5. Incubate at 50°C for 15 min.

6. Add an equal volume (2mL) of chloroform:isoamyl
alcohol (24:1 [v/v]).

7. Invert several times to mix.

8. Centrifuge (3000 x g) for 10 min at 4°C.

9. Transfer the aqueous upper phase to a new 15-mL tube.

Note: Taking only 90% of the supematant is best to avoid
the inclusion of cellular debris. This is highly correlated
with the quality of the extracted DNA.

10. Repeat steps 6-9 (optional).

11. Add a 1/10 volume of 3 M NaOAc, mix gently, add an
equal volume of room-temperature isopropanol, and
gently invert several times.

Note: For 3.5mL of supernatant, add 0.35mL of 3M
NaOAc and add 3.85 mL of isopropanol.

12. Precipitate at —20°C for more than 1h.



Note: If aggregates are visible, moving to the next step is (Thermo Fisher Scientific, Waltham, Massachusetts,
possible for faster processing. USA) and a Qubit 4 Fluorometer (Thermo Fisher

13. Centrifuge (3000 x g) for 10 min at 4°C. Scientific).

14. Discard supernatant. 2. Check the length distribution of the DNA fragments

15. Wash pellets with 70% cold ethanol (ca. 5 mL per tube). using the Femto Pulse system (Agilent Technologies,

16. Centrifuge (3000 x g) for 10 min at 4°C. Santa Clara, California, USA).

17. Discard supernatant.

Note: Keep the tube inverted for 1 min, and wipe out the VI. Special reagents and consumables
tube wall with a Kimwipe.

18. Dry the pellet completely. 1. Reagents

Note: This step is very important for the quality « PVP-10: MilliporeSigma (Burlington, Massachusetts,
of DNA. The smell of alcohol is a good indicator of USA) CAS 9003-39-8
incomplete drying. « Spermine: MilliporeSigma S2876

19. Add 50-500 uL of deionized water to each tube to « Spermidine: MilliporeSigma $2501
dissolve the pellet. « Triton X-100: MilliporeSigma T8787

Note: If it is difficult to dissolve, incubate in a 50°C water « PEG 6000: MilliporeSigma 81260
bath for up to 10 min. « RNase A: MilliporeSigma R6513

Note: Crushing the pellet with a pipette tip might be helpful for « Proteinase K: MilliporeSigma P2308

faster resuspension, but never vortex the sample. If the

pellet is not completely resuspended after incubation, a 2. Consumables

brief centrifugation (3000 xg for 5 min) followed by only « Vacuum-aid cell strainer (100 pum): pluriSelect Life

the use of the supernatant will help speed up processing. Science (pluriSelect Life Science, Leipzig, Germany)
43-50100-51 yellow 100 pm

V. DNA size and quality measurements « Vacuum-aid cell strainer (40 pm): pluriSelect Life
Science 43-50040-51 blue 40 um
1. Check the quality (As0/Azgp and Azgo/ Az3g ratios) and « Connector ring: pluriSelect Life Science 41-
quantity of extracted DNA using a NanoDrop 2000 50000-03

Appendix 3: Evaluation of factors influencing the DNA extraction process, using three taxa each as examples. Effects
of (A) pipetting repeats (experimental group: additional 200 pipetting pumps with P200 tip), (B) degree of grinding
(experimental group: additional 2 min of grinding with a second pour of liquid nitrogen), and (C) centrifugation force
(control group: 3000 x g experimental group: 5000 x g).

DNA fragment length

Peak (kbp) % of fragments >50 kbp
Example taxa for each factor Control group (a) Experimental group (b)  Control group (a) Experimental group (b)
Scutellaria salviifolia 132.27 46.21 41.4% 27.7%
Sambucus williamsii 157.42 127.62 35.3% 31.4%
Average + standard deviation 146.94 + 10.69 88.73 +33.33 39.7% + 0.03% 30.0% + 0.02%

Average (a) - average (b) 58.20 +22.97 9.63% + 0.04%

DNA fragment length

Peak (kbp) % of fragments >50 kbp
Example taxa for each factor Control group (a) Experimental group (b)  Control group (a) Experimental group (b)
(A) Pipetting
Chloranthus fortunei 25.99 22.00 12.5% 7.7%
Alisma plantago-aquatica subsp. orientale 165.50 91.6 26.1% 19.1%
Scutellaria insignis 37.89 36.18 12.3% 13.3%
Average + standard deviation 76.46 £ 63.15 49.93 + 30.03 17.0% + 0.06% 13.4% + 0.05%
Average (a) — average (b) 26.53 +41.04 3.6% + 0.04%
(B) Grinding
Chloranthus fortunei 32.37 29.30 21.5% 0.0%
Carex breviculmis 107.36 88.95 34.7% 35.8%
Viola collina 142.52 147.49 46.8% 42.9%
Average + standard deviation 94.08 +45.94 88.58 +48.25 34.3% + 0.10% 26.2% + 0.18%
Average (a) - average (b) 550+11.88 8.10% + 0.12%

(C) Centrifugation

Chloranthus fortunei 151.12 92.37 42.4% 3L1%

Appendix 4: Effect of DNA amount on the pulse-field gel electrophoresis image (0.7% agarose). Different quantities
of the same extracted DNA (Magnolia grandiflora) were loaded in each lane. The length of the brightest position (peak;
arrows) and the quantity of DNA show a positive relationship. M = MidRange I PFG marker (New England Biolabs,
Ipswich, Massachusetts, USA); A =125ng; B=250ng; C=500ng; D=1pg; E=2pg.
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